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General Motivation
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Predict Lip Acceleration from EMG Signals

Better understand the diction mechanism

Input functions (x;)_; Output functions (y))7_,
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Underlying random variables (X, Y) function-valued.

Goal
Learn a model h such that h(X) ~ Y
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Underlying random variables (X,Y) in R x R

Learn a model h such that h(x)(0) estimates the conditional

f-quantile of Y given X = x
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Emotion Transfer for Faces

Transfering a target emotion to an input facial representation
Move continuously from one emotion to another

Neutral

Surprised
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Emotion Transfer for Faces

Transfering a target emotion to an input facial representation
Move continuously from one emotion to another

Neutral

Surprised

\ Happy

Learn a model h: X — (© — X) such that h(x)(0) transfers

emotion 6 to the input x
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Common Ground Between These Problems

Target functions h*: X — (© — RP) function-valued

h*e argmin Eyy) [J;) £, h(X)(H),Y(H))du(H)}

h measurable

R(h)
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Common Ground Between These Problems

Target functions h*: X — (© — RP) function-valued

h*e argmin Eyy) [J;) £, h(X)(H),Y(H))du(H)}

h measurable

R(h)

e Lip acceleration prediction: 6 is time, © = [0, 1]
e Risk assessment: 6 is quantile level, © = (0,1)

e Emotion transfer: # encodes emotion, © = B, c R?
[Rus80] or = R® [VA19]
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Towards Learning Function-Valued Models

Learn function-valued functions, i.e. mappings

h: X —

Benefits:

e Regression with functional data [RS97]
e New angle to multi-task learning [EP04]

e Imposing functional constraints
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Towards Learning Function-Valued Models

Learn function-valued functions, i.e. mappings

h: X —

Benefits:

e Regression with functional data [RS97]
e New angle to multi-task learning [EP04]

e Imposing functional constraints

Challenges: Representation and Computability
Vector-valued RKHSs chosen as hypothesis space [Ped57]
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Modeling Function-Valued Functions




Scalar kernels and RKHSs

Scalar kernel k: X x X — R [Aro50]

e Symmetric: R(x,x") = R(X', x)
o Positive definite function: >3 .1, cicjR(xj, Xj) = 0

Associated RKHS Ky, = Span{R(:,x) : x € X}
Reproducing property: h(x) = (h, R(+, X)),

7/39



Scalar kernels and RKHSs

Scalar kernel k: X x X — R [Aro50]

e Symmetric: R(x,x") = R(X', x)

o Positive definite function: >3 .1, cicjR(xj, Xj) = 0
Associated RKHS Ky, = Span{R(:,x) : x € X}
Reproducing property: h(x) = (h, R(+, X)),

Machine learning problem with (X;, ¥;)ie[n) € (X x R)":
A o A
h—argmin — 37 (h(),y) + 5 lInlE,

hEg'fk fE[I’I] —
- regularization

data?ltting
Representer theorem [SCO8]

El(é\‘i)ie[n] eR" s.t. FI(X) = Z di/?(X,Xi)
ie[n] 7/39



Integral Operators

e Represent functions in RKHSs to handle (-, -);210
Let © compact, pu probability measure, k continuous

r o (Ple 1[0, 4]
' foo= (0~ (e f(0)RO,0)dud"))
Spectral decomposition:

vfe 1[0, ], Tef = Y. Ny

j=1
e \1 =)\ >...>0nonnegative eigenvalues
o (11;])}?‘21 orthonormal system in %[O, u]

Truncated basis with first m eigenvectors
m
h~ > B

j=1
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Operator-Valued Kernels and vv-RKHSs

VV-RKHS framework [CDT06]:

e Hilbert space of functions with values in a Hilbert space Y
e Associated to an operator-valued kernel acting on Y
e Drives regularization
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Operator-Valued Kernels and vv-RKHSs

VV-RKHS framework [CDT06]:

e Hilbert space of functions with values in a Hilbert space Y
e Associated to an operator-valued kernel acting on Y
e Drives regularization

Scalar-valued kernel Operator-valued kernel
R:XxX—->R K: X xX— L(Y)
R(x,x") = R(X, x) K(x,x') = K(x', x)#

Dlijepn] @ioyR(X;, %) = 0 i jefi] <K(x,—,xj)y,-,y,->y =0

Ke:y €Y (X' — KX, x)y)
Hp = Span{k(-,x) : xe X} Hy = Span{Kyy : (X,y) € X x Y}
h(x) = (h,R(-,X))5, e R h(x) = KfheY
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Regularized Empirical Risk Minimization (RERM) in vv-RKHSs

Family of problems:

e Data (X,',)/;)P=1 € (DC X H)n Li.d.
e ConvexlossL:YxY >R

~

. A
h := argmin — Z L(h(x),yi) + = HhHIZJ{K
2
hedy ie[n]
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Regularized Empirical Risk Minimization (RERM) in vv-RKHSs

Family of problems:

e Data (Xi7yi)P=1 & (I)C X y)n iid.
e ConvexlossL:YxY >R

~

] A
h := argmin — Z L(h(x),yi) + = ||th2HK
2
heXk ie[n]

MPO5

@), e Y st h(x) = D KX x)é;

Challenge:
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Parametric Duality for RERM in vw-RKHSs

Parametric duality for convex optimization [Roc70]
Fenchel-Legendre conjugate of a function f: Y — R:

F(y) = sup &,y )y — f(Y)

y'eY
Notation: Lj: y — L(y,V;)
BSD16
It holds that A(x) = &= 3 K(x, X)&, where

1
(&)L, = argmin Z o) + n Z <ai7K(Xian)O‘j>y

(@)€Y ie[n) ije[n]

Challenge:
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Modeling Function-Valued Functions in vv-RKHSs

Our use case: Y space of functions
Simplest case p = 1, combine two scalar kernels

Ry: X x X - R Reg: ©® x© - R
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Modeling Function-Valued Functions in vv-RKHSs

Our use case: Y space of functions
Simplest case p = 1, combine two scalar kernels

Ry: X x X - R Reg: ©® x© - R
View 1: Y = Hp,

K(x,x") = l?x(x,x’)ldg{ke € L(Hyy)

View 2: Y = [?[©, u]
K(x,X') = R (%, X') Tieg € £(L7[O, p])

Structure: Hy ~ Hy,, @ Hpy >~ Hpy gk
Same space of functions up to a reparameterization
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Optimization Challenges

Goal
Find the coefficients &;

Two main challenges:
Representation

e &; function of 6

e Y infinite-dimensional, either 3, or L?[©, x]
Computability

o L(f,9) = §o €(6,(6),9(6))du(0)
e L[¥(—q) involves Y

o K(Xi,Xj)aj = R (Xi, Xj) Tro i

13/39



Proposed Solutions

In this thesis
Global study of primal and dual methods

type Y parameterization loss algorithm
closed form L?[©, 1] eigenbasis of Ty, square loss analytic
o closed form  Hp, double representer square loss analytic
e primal Hre double representer sampled GD
primal Hre ORFF any SGD

e dual L?[©, 1] eigenbasis of Ty, compatibility loss/T,, GD

dual L?[©, ] linear splines prox computable PGD
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Proposed Solutions

In this thesis
Global study of primal and dual methods

type Y parameterization loss algorithm

closed form L?[©, 1] eigenbasis of Ty, square loss analytic

o closed form  Hp, double representer square loss analytic

e primal Hre double representer sampled GD

primal Hre ORFF any SGD

e dual L?[©, 1] eigenbasis of Ty, compatibility loss/T,, GD

dual L?[©, ] linear splines prox computable PGD
Today:

e Primal with view 1 for infinite task learning
e Dual with view 2 for robust functional output regression
e Closed form with view 1 for emotion transfer
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Infinite Task Learning




Jointly Learning Many Tasks

Extending multi-task learning [EP04]
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Jointly Learning Many Tasks

Extending multi-task learning [EP04]
Learning tasks with a free parameter 6:

e Quantile regression [KB78] (6 quantile level)

e Cost-sensitive classification [ZEO1] (# imbalanced
coefficient)

e One-class SVM [Sch+01] (8 proportion of outliers)

Goal
Jointly learn these tasks for a continuum of @ [Tak+13]

Multi-task learning ‘ Infinite-task learning
Finite number of (0/)}‘.):1 Infinite number of @

RP-valued model function-valued model
sum of loss functions § of loss functions

15/39



Conditional Quantiles

Conditional quantile:
Take (X,Y) random variables in R? x R, (X,Y) ~ Py,

G(x)(0) := inf{t e R|P(Y <t|X=x) >0}, 6¢(0,)

Shape:
q(x) increasing function of ¢

16/39



Variational formula:

q(x)(6) € argmin E [£(6, t, Y)|X = X]

teR
where (6, -, ) is the pinball loss [KB78]:
0(0,t,s) = max (6(s —1t),(0 —1)(s—1))

€(0,t,s)

9—11 !

Pinball loss for 8 = 0.8
17/39



Problem Formulation

Task at level 8 € ©

min  Exv) [£(0,h(X),Y)]

h measurable
described by /: © x Rx R —> R
Given S := (x;, ¥i)iL, € (X x R)" i.i.d. following Py y

. 1 A
h = arg min p Z L(h(x),y;) + 5 ”hHg{K

th‘fK ie[n]

L(h(x),y) = S €6, h(x)(6), y)du(®)

u encodes importance of tasks

Rs(h) := 12,6 L(h(x),y;) empirical risk
View 1: K = Ry |dg{ke

18/39



Sampled Empirical Risk

Representer theorem [MPO5]:
@), e Hp, , h=D K x)d
ie[n]

Not enough: representation, computability

19/39



Sampled Empirical Risk

Representer theorem [MPO5]:

Not enough: representation, computability

Z Z 771] /ja ) Vi)

e Monte-Carlo: n; = % (9/}_);11 ii.d. u
e Quasi Monte-Carlo: n; = -, §; low discrepancy (Sobol)

e Kernel quadrature rules, ...

19/39



Double Representer Theorem

Approximated problem

~ ~ A
h = argmin Rs(h) + = HthzHK
heiJ-CK 2

Double representer theorem (chapter 3)

ho)) = > D djka(x,x)ke(8,0;), d;eR
ie[n] je[m]

Idea: reproducing property in both Hp, and H,

e Finite parameterization of the solution € R™M
e Computable loss
e Plug-in prefered solver depending on ¢

20/39



Generalization Bounds for Quantile Regression

Goal: bound with high probability
R(h) — Rs(h)
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Generalization Bounds for Quantile Regression

Goal: bound with high probability

R(h) — Rs(h)
Framework of uniform stability [BE02]
e Suitable to vv-RKHSs [Kad+16]
e Trade Rs(h) against Rs(h)

e Requires bounded ky, kg, Y
e Choosing m ~ v/ An
21/39



Handling Shape Constraints

Example of functional constraint: ¥x, g(x) is nondecreasing
Add soft constraint to encourage non crossing quantiles:

Que(h) = Anc L j@ I~ (26h)(X)(6)], dPx(x)d(0)
Approximated as

Qne(h) == A

" e Mne 2 2 ‘_ (2oh) &) (@),

’ennc femnc

(] Grld (;(j)jenncr (gj)jemrxc
e Hyperparameter A, > 0

22/39



Handling Shape Constraints

Problem to solve:

N ~ A ~
h = argmin Rs(h) + = [|h[l5;, + Quc(h)
hE}fK 2

Working with RKHSs -> access to derivatives [Zho08]

(&) jeqnyxm) € R™ and (By)ije[nue]x [mae] € R S,

h(x)(8) = Z Gjjkx (x, i) Re (6, 6))
Ije[n]x[m]
+ D, Bikx(x,%)d2ke(6,6)

I,j€[Nnc] % [Mnc]

e Finite dimensional representation

e Price to pay: tune An, modify loss
23/39



Numerical Illustration

Small data regime prone to crossing quantiles (n = 40)

Non-crossing: A, = 10.0 Crossing: A, =0
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1 0.6
> 0 <
0.4
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Deep Kernel Models for QR

Managing fish resources: estimate age of fishes using otholiths
pictures [Ord+20]

Age 3 Age 7 Age 10 Age 13
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Deep Kernel Models for QR

Managing fish resources: estimate age of fishes using otholiths
pictures [Ord+20]

» & W

Age 7
X is image, Y is age of the fish
Using a deep kernel [Yan+15; MZS17]

Age 3

Age 10 Age 13

Roc (%, X') = Ry (o (X), do (X))

e ¢, X — Vneural architecture (Inception v3, [Sze+16])
e Ry kernel on the feature space

25/39



Numerical Illustration

Use of Random Fourier Features [RRO7] for ky and ke
-> Finite dimensional representation by design
Joint optimization on « (kernel) and w (neural)

Learned quantiles for a few otholiths
20.0 20

,..
s
Ground truth age

0
0.0 0.2 0.4 0.6 0.8 1.0

Quantile level 6 26/39



Functional Output Regression:
Beyond the Square Loss




Functional Output Regression

Data (x;, V)L, i.i.d. realisations of (X, Y). Response variable Y is
a function: y; € L?[©, ]

Regularized empirical risk minimization in vv-RKHS:

R 1 A
heargmin — 7 L(y; — h(x)) + 5 |hll3,
hedy ie[n] ’

o L(f) = 1 §o f2(0)dd closed-form (ridge regression)
with view 1 [Lia07], view 2 [Kad+16]
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Functional Output Regression

Data (x;, V)L, i.i.d. realisations of (X, Y). Response variable Y is
a function: y; € L?[©, ]

Regularized empirical risk minimization in vv-RKHS:

R 1 A
heargmin — 7 L(y; — h(x)) + 5 |hll3,
hedy ie[n] ’

o L(f) = 1 §o f2(0)dd closed-form (ridge regression)
with view 1 [Lia07], view 2 [Kad+16]

Goal
Enforce robustness or sparsity for h through L
Exploit duality: use Y = L?[©, u], K = Ry Tp,

27/39



The Huber Loss

Combine f,g: Y — R through infimal convolution [BC+11]
fogly) = inf fly —v) +g(v)

Huber loss of parameter k > 0:

inf
y'eY

T2
L= llyorlllly

— 3llall?

Huber loss

—a -2 0 2 2 3 5 2 -1 0 1

e Asymptotics as « ||-||y instead of ||~||123 |
28/39



A Dual Approach

Dual problem:

(&j)iL, = argmin ZL aj)— <oz,,y,>y+ Z Laj, K(Xi, X aj>y

()i 1€Y" je[n] ije[n

Infimal convolution and duality:

* 1 2 : ! 2 ) *
1t = (2||~|w|-||y) > (le-llg> )

2 [y

where y indicator function, B, ball of radius «

29/39



Learning with Huber Loss

. 1 !
inf 2, 5 lleilly =iy + 535 D) fexli ) o Tro

(@i e ijeln

sit. Vie[n], lailly <k

Challenges: compute (a;, Tf?ea]>y' handle the constraints
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Learning with Huber Loss

, 1
vlnnf yn Z E HaiHy <ahyl>‘é + Z ["’DC Xl7Xj <04/7 Tk@aj>y
()" i) M et

sit. Vie[n], lailly <k

Challenges: compute (a;, Tf?ea]>y' handle the constraints
Represent the (a;)ies) Using eigenbasis (v;)jerm) Of Tk

o = Qi ;i
ey eR €Y

e Finite dimensional parameterization by a € R"™

30/39



Learning with Huber Loss

Notation

o Gram matrix Ky = [Rx(X;, X;)]i je[n] x[m] € R"*"

o Figenvalues matrix A = diag {(\)je[m} € R™*™
o Data-fitting term R = [{y;, ¥yl je[n]x[m] € R™™
® |ll5,00: maximum of row-wise ||-[|,

1 1
inf  Tr(-aa' —aR" + —Kyaha'
aelﬂgnxm r <2aa aR’ + N xa\a

st ledly o < 5

e Solvable using projected gradient descent

e When & is large, recover ridge regression [Kad+16] e



Numerical Illustration

Lip dataset, augmented with outliers.
So: scale of the outlier

LOO generalization error as a function of k

< 0.91

o

c

(3]

-5 0.8 5,205

© — So=1

207 a2

o So=5

C _____ e . .
g 0.6- Ridge Regression
o

@)

=054 \ o~ TTTTTTTTTTTTTTTTTooTTTToTTeos
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Emotion Transfer for Facial
Landmarks




Problem Formulation

e Facial representation space X = R?
e Emotion embedding space © c R®

Goal

Learn a model h: X — (© — X) such that h(x)(0) transfers
emotion 6 to the input x

Given ( Xi ,(y,-/-)je[m]),-e[n] observed at emotions (Hij)i,je[n]x[m]
——

eX eqxm
Empirical risk

Rs(h) = ,%,-E% 1A 85) = Y[

33/39



Emotion Encoding

Pre-defined ¢, normalized embedding in valence-arousal
space [Rus80]
Centroids from AffectNet database [Kol+19]

1.00 urprised

0.75 1 Aoy ™

i{gusted \
0.50 1

0.25
Happy

Arousal

—0.25 -

/

0.001 / eutral
\
\ia

~0.50 1 : /
-0.75 1 \ /
—1.00 1 ~

-1.0 -0.5 0.0 0.5 1.0
Valence
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Hypothesis Space: vw-RKHS

Modeling with view 1

h:X— (6 X)
S —
EJ{G
(S ——
EJ{K

e Scalar kernel kg
e Scalar kernel ky
e Positive self-adjoint matrix A € R?%9 encoding output

similarities

G(0,0") = ke (0,0)A, K(x,X") = Ryc(X, X")dge,

35/39



Optimization Problem

Optimization problem

R A
h = argmin Rs(h) + = Hhung
th}fK 2

h)0) = D1 . ka(x,X)Re (0, 05)Ad;, ;e R

ie[n] je[m]
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Optimization Problem

Optimization problem

R A
h = argmin Rs(h) + = Hhung
th}fK 2

h)0) = D1 . ka(x,X)Re (0, 05)Ad;, ;e R

ieln] jelm]

In matrix form (Sylvester equation)
K&GA + nm? & = Y
e v € anxd K e RMMxnm y o anxd

o IfA = ldgq

& = (K+ Anmidgom) ™'Y 36/39



Experimental Results

GAN-based baseline [Cho+18]
Mean square error

Methods  KDEF frontal RaFD frontal

Ours 0.011 4+ 0.001 0.007 £ 0.001

StarGAN  0.029 £ 0.003 0.024 £ 0.007

Classification accuracy

Methods KDEF frontal RaFD frontal

Ours 74.81+3.10 77114 3.97

StarGAN  70.69 £8.46 65.88 £ 8.92
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Conclusion and Perspectives
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Conclusion

Rich framework of integral losses and vv-RKHSs
Tractable optimization problems after approximation

e New angle to multi-task learning: functional view

e Adapted to functional output regression
Take home message for optimization

e Primal: often the simplest
e Dual: convoluted losses

e Manageable computational complexity

Python library torch_itl
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Appendix




Random Fourier Features

Valid for shift-invariant kernels: R(x,x") = ko(x — x’)
Bochner’s theorem: 3 unique finite measure py S.t.

R(x,z) = JRd cos ({w, X — 2)) dpg(w).

Given some integer m and (wj>jm=1 i.i.d. sampled from py, define

NIE

V(x,xX') e X2, R(x,X) = % cos ((wj, X — X))
j

Il
LN

Feature map

(cos (wy X), ..., cos (whX),sin (wy X), . ..,sin (whx))".

P(x) =

Bl
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Integral Operator Eigendecomposition

Problem: find (A, %)
T = A

Hard in general, few closed form (Laplace kernel & p Lebesgue)
Reduces to SVD with RFF

V= J cos(w;' ) cos(wf@)du(@) Viimjtm = J sin(w.' 0) sin(wf@)du(@)
e e
Viimj = Je sin(w,' 0) cos(wf@)du(@) Viitm = L) cos(w;' ) sin(wf&)du(@)

Eigendecomposition of W gives coefficients/eigenvalues
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Experimental Setup Quantile Regression

e Ry, ke Gaussian
e Smoothed pinball "a la Huber”
e LBFGS on «

Other possibility: duality
Non smooth in primal -> Smooth in dual + linear constraints
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Quantitative Results Quantile Regression

DATASET JaR IND-QR IQR
PINBALL PVAL, CROSS PVAL, PINBALL PVAL, CROSS PVAL, PINBALL CROSS
( ) ( ) ) ( )

COBARORE 159424 9-107° 01+04 6-107% 150+21 2-107" 03408 7-107% 165+36 2.0+ 6.0
ENGEL 1754555 6-107° 0.0+02 1.107%° 63+5 8.107% 4.0+12.8 8.107% 47+6 0.0+0.1
BOSTONHOUSING 49 +4 8-107°" 07407 2-107" 4944 8.107% 13+12 1.107%® 49+4 03405
CAUTION 88+17 6-107" 01402 6-107° 89+19 4-107° 03+04 2-107% 8+16 0.0+ 0.1
FTCOLLINSSNOW 154+ 16 8-107%" 0.04+0.0 6-107% 155+13 9.107%" 02409 8-107 156+17 0.1+0.6
HIGHWAY 103419 4-107° 08+14 2-107%2% 99+20 9-107" 62+41 1-10°Y 105+36 0.1+0.4
HEIGHTS 127+3 1-107% 00400 1-107° 12743 9.107" 0.04+0.0 1-10t%° 127+3 0.0+0.0
SNIFFER 23+6 8-107% 01403 2-107% 4+5 7.107Y 14+12 6-107Y 4+7 01401
SNOWGEESE 55420 7-107% 03408 3-107% 53+18 6-107° 04410 5-107%2 57420 02406
UFC 81+5 6-107% 00+0.0 4-107% 82+5 7.107% 1.0+14 2.-107% 8+4 01403
BIGMAC2003 80 +21 7-107%" 14421 4-107% 74424 9.107% 09411 7-107%° 84424 02+0.4
UN3 98+9 8.107" 00400 1-107% 99+9 1.1+ 12+10 1.107% 99+10 0.1+0.4
BIRTHWT W +13 1-107%° 00400 6:-107° w0+12 9107 01+02 7-1072 141+12 0.0+0.0
CRABS MN+1 4-107%° 00400 8-107% 1M+1 2-107% 0.0+£0.0 2-107%° 13+3 0.0+0.0
GAGURINE 61+7 4-107% 0.0401 3-107% 6+7 5.107° 01+02 4-107% 62+7 0.040.0
GEVSER 05+7 9-107% 01403 9:107% 105+6 9-107% 02+03 6-107% 104+6 0.1+0.2
GILGAIS 5146 5-107% 01401 1:107% 49+6 6-107% 11+07 2.107% 49+7 03403
TOPO 69+18 1-10t%° 01+05 1.107%0 71420 1.107° 17+14 3.100Y 704+17 0.040.0
MCYCLE 66+9 9-107" 02403 7-1072 66+8 9-107° 03+03 7-107% 6549 0.0+0.
cpUs 7+4 2-107% 07410 5-107% 745 3.107% 12+08 6-107% 16+10 0.0+0.0
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Impact of m in Quantile Regression

Number of sampled locations (0,-)].”;1

m=2 m =34
25
a0 00
-25
0.00 0.25 0.50 0.75 1.00 1.25 1.50 0.00 0.25 0.50 0.75 1.00 1.25 1.50
X ¥
2.5
A 00
-25
000020 T 1 000020 T 1
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Deep Kernel Learning with Random Fourier Features

Parameterized model:
h(x)(0) = () ad(0)

Optimization problem:

i B | 120 (0 (ke0807) o] 0) + 57 o)

v

=J(0,v)

-> Stochastic gradient descent, compatible with NN
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Projected GD for Huber loss

1 7 T | T
= = —aR —Kyal
Ja) :=Tr <2aa aR’' + o Ko

Gradient step:

o™ = o® — 4 (a(t) + ;—nKxa(t)/\ —~ R>

Projection step:

aI(:tM) . (Mﬂ)al{:tﬁ)

Stepsize y = ¢:

1 1
— — _ — Lk
Vi) = a+ i KyaA—R, C=1+ i [[Kaclop A1
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e-insensitive Losses

0 if llyly <e

Vyel, L(y) = inf L(y —ed) otherwise

ldlly<
Using convolutions:
LE = L DXBE()
Le="L"+el

12 — Hl=)i?

e-insensitive
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Experimental Results: Partial Observations

What if we do not observe all emotions for all subjects ?
e Random mask (ni,j)ie[n],je[m] S {O,1}nxm
e Use Z,‘(Q;J) only ifT],‘J = 1
e Percentage of missing data p := %Z,’je[n]x[m] 0 j

—— KDEF mean
_14 ==~ KDEF min-max
—— RaFD mean
—== RaFD min-max

l0g10 Test MSE

0.0 0.2 0.4 06 0.8 1.0
% of missing data

Logarithm of the test MSE (min-mean-max) as a function of the
percentage of missing data. 39/39



Qualitative Results

Radial sampling in the emotion direction
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